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The stability of core-annular flow in vertical pipes is analysed using the linearized 
theory of stability. In previous studies instabilities due to interfacial friction, 
interfacial tension and Reynolds stresses in the bulk fluid were identified and 
associated with observed instabilities. In  this study we include and analyse the 
effects of gravity. In one case gravity opposes and in the other aids the applied 
pressure gradient. Some preliminary results from our experiments are also presented. 
The prediction of stability for perfect core-annular flow in a carefully selected 
window of parameters is verified for the case of free fall in which the applied pressure 
gradient vanishes. 

1. Introduction 
This paper is the fourth of a series on the stability of core-annular flow (CAF). In  

the previous three works, Joseph, Renardy & Renardy (1984, hereinafter referred to 
as JRR) ,  Preziosi, Chen & Joseph (1989, hereinafter referred to as PCJ) and Hu & 
Joseph (1989, hereinafter referred to as HJ), gravity was neglected. PCJ calculated 
growth rates, neutral curves and HJ also calculated the terms in the energy balance. 
By correlating the profile of instability as calculated by linear theory with 
experiments, the linear theory can be used as a diagnostic tool predicting flow 
regimes which arise in practice: bubbles and slugs of oil and water, bubbly 
mixtures of oil and water, stable CAF, wavy core flow and emulsions of water in 
oil. Flow regimes, wavelengths and wave speeds seem to be predicted with fair 
accuracy by linear theory, even with gravity neglected. The apparent success of the 
linear theory in predicting mechanics deeply in nonlinear regimes is a surprise. In  this 
paper we are going to again carry out a linearized analysis, for Poiseuille flow in 
vertical pipes in which we can account fully for the effects of gravity in the presence 
of a density difference without violating the assumption that the basic flow is 
axisymmetric. We also include the effect of an applied pressure gradient which can 
reinforce or oppose the body force due to gravity. 

Previous works on the stability of core-annular flow are discussed in the three 
references mentioned. All these works neglect gravity. Gravity does not have an 
effect on the dynamics when there is just  one h i d .  Hickox (1971) was the first to  
treat the effects of gravity in Poiseuille flow of two fluids in a vertical pipe. He also 
considered the effects of an applied pressure gradient. However, his analysis is 
limited to the long waves and the case where the more viscous component is in the 
annulus, which is of little interest to the application of lubricated pipelining. Lister 
(1987) studied the instability of vertical channel flow of two fluids to long waves in 
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the limit of very large annulus. Y. Renardy (1987) investigated numerically the 
stability of lubricated Poiseuille flow of two liquids in a vertical channel to long 
waves. She noticed that there could be an instability due to the density difference in 
the presence of gravity even when the viscosities are matched. I n  this paper we study 
the stability of vertical core-annular flow in a circular pipe when all the major 
physical effects, except nonlinear effects and preferential wetting, are included. The 
major physical effects treated are associated with gravity, density difference, 
viscosity difference, surface tension and Reynolds number. Our calculations show 
that heavy lubricant should be used to stabilize capillary instability in slow flows in 
the direction of gravity and light lubricant should be used for slow flow against 
gravity. Our results also show that there is an optimal value of density ratio that 
maximizes the interval of Reynolds numbers for which CAF is stable. 

It is essential that  the predictions of linearized theory be tested against 
experiments. We have constructed two devices to study the flow of two liquids in a 
vertical pipe, one for free-fall flow under gravity and the other for forced flows. We 
used the linear theory to predict the parameters necessary to enter into the window 
of stability of perfect core-annular flow in the free fall apparatus and obtained 
agreement of theory and experiment. With these two devices we hope to monitor all 
the parameters which appear in the analysis given here and those which are needed 
for the nonlinear theory we are working out. The vertical pipe seems to be the 
instrument of choice in this field because the experiments and the analysis are well 
matched. The analysis of and experiments on bicomponent liquid flow in vertical 
pipes may help to understand what happens in the pumping of crude oil from 
underground through a drilled well in the presence of water. In  fact water lubrication 
for well pumping appears to be a possible technology in down hole situations with 
shallow wells or when the oil viscosity is very large as in cold wells. For such 
applications pumping u p  against gravity is the interesting case. 

2. Basic flow 
Two immiscible liquids are flowing up or down a vertical pipe of radius R,. The 

interface between the two liquids is given by r = R(0, x, t ) ,  where ( r ,  6,x) are 
cylindrical coordinates chosen in such a way that gravity is acting in the positive x- 
direction, as shown in figure 1 ,  and u = (u,v, w) are the corresponding velocity 
components. The region 0 < r < R(6, x, t )  is occupied by the first liquid with viscosity 
,ul and density p,, and the second liquid with viscosity p2 and density p2 is located 
in R(t9, x, t )  < r < R,. The pipe is infinitely long and the mean value of R(t9, x, t )  is R,, 
a constant fixed by prescribing the volumes of each liquid, independent of t .  

We are interested in the core-annular flow solution of the governing equations: 

U = ( O , O ,  Ff$(r)), i = 1,2,  

R(8, x, t )  = R,, 

where R, is constant. On the cylindrical interface r = R,, 

where T is the interfacial tension and the jump across the interface 
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FIGURB 1. 
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Sketch of vertical core-annular 
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flow. 

It follows from (2.1) that a necessary condition for the existence of CAF is 

- -f (constant). 
__-A- dFl - CiP 
ax ax 

The axial velocities are 

Wl(r) = f + A S  -(R:-?)+- f + p 2 g ( R i - B : ) + R M l n % ,  0 < r <R,, (2.2a) 
4ru1 4P2 2P2 Rl 

(2.2b) 

We scale length with R,, velocity with gR:/vl, time with vl/gR1 and pressure with 
p 1  g2Ri/v;L. The following dimensionless parameters are defined : 

aTR, TR, 
J*==--- -- 

P 1 4  P l V ?  

We also introduce R, 

The parameter F is the ratio of driving forces, the ratio of the pressure gradient to 
the force of gravity. The Reynolds number R, is based on gravity and is zero in a 
forced flow when gravity is entirely neglected, a case not considered here. Forced 
flows with a fixed value of R, are characteristic for our experiments. Strong forcing 
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is t,hen obtained when IF-11 9 1 for a fixed value of R,. Free fall without forcing 
means F = 0, the pressure gradient and gravity act in the same direction when the 
driving force ratio F > 0, and in opposition when F < 0. 

When written in terms of the dimensionless numbers the velocities (2.2) of CAF 

( 2 . 3 h )  

Examination of (2 .3a ,  6 )  shows that we may determine when the flow gocs up and 
when it goes down with inequalities framed in terms of two values; each one is 
negative : 

= -rn+21na+~,(a2-1-21na) 
2 

Wb+aZ--l 

Three cases are distinguished 

down-flow in the core and annulus : F > Fu; (2.4) 

mixed flow, up in some place, down in another: 

E; > F > F , ;  

up-flow in the core and annulus: Fl > P ;  (2 .6)  

where (q,Fu) = (Fl,F,) if 6, > 1 and (F,,F,) = (F2,F1) if c2 < 1. 
The situation of interest in pumping against gravity is (2.6) with F < Fl when the 

water is heavier and outside. Free flow corresponds to downward flow in both core 
and annulus. The size of the P-interval for which mixed flows are possible is 

I. ( 1  -Q1 2a2 In a-a2 + 1 m(a2 - 1-2 In a )  
m+a2--1 

IF1-Fzl = ={ a2 + 

When the densities are matched Fl = F2, and mixed flows are not possible. 

3. Experiments 
We have built two devices to study lubricated vertical core-annular flow. The first 

set-up is a free-fall apparatus (see figure 2 ) .  The fluids are introduced into the pipe 
in a core and annulus. The entrance for the core is a centrally located stand pipe 
through which oil is introduced. The water cnters through an annulus surrounding 
the stand pipe. The flow is driven by gravity alone acting on the density difference, 
care being taken not to introduce large differences in t'he static heads of oil and water 
a t  the entrance. The water and oil are kept separated by the stand pipe wall for a few 
centimetres before the two streams merge into the test plastic pipe of inner radius 
0.3175 em and 120cm long. The two fluids empty into the atmosphere sim- 
ultaneously. We constructed the free-fall apparatus in a rough and ready way solely 
to demonstrate that a perfect core-annular flow, i.e. the basic flow given by (2.3) with 
F = 0, could be achieved in experiments designed so that the system parameters are 
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FIGURE 2.  Free-fall apparatus. The test section of the pipe is surrounded by a square box filled with 
glycerine to remove the visual distortion created by the circular pipe. The inner radius of the pipe 
is 0.3175 cm and the pipe is 120 cm long. 

in the window identified as stable by the linear theory. We shall compare theory and 
experiment in 9 8. 

The second apparatus, shown in figure 5 ,  is a much more carefully designed inverse 
U loop whose long legs are pipes for up and down flows. These pipes are plastic and 
are of inner radius 0.48 cm. The second apparatus is used to study forced flows, up 
when the pressure gradient and gravity are in opposition and down when the 
pressure and gravity are in the same direction. We are presently collecting data on 
the flow rates, pressure drops and hold-up ratios for several oil-water systems. We 
intend to present these data and detailed flow charts following Charles, Govier & 
Hodgson (1961). We are going to make an extensive and detailed comparison 
between the linear theory and experiment after we have collected the data we need 
to input for the theory. We can present a part of these results in this paper, 
documenting the prediction of perfect CAI? in the free fall when the parameters of the 
experiment are selected in the window of stability. We also present here some 
representative results for the linear theory to provide the reader with an 
understanding of the range of phenomena which may be expected from the 
instabilities of CAF in vertical pipes. 
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Density Viscosity Interfacial tension 
Fluid (gm/cc) (P) (dyne/cm) 

12.27 0.34 1.03 1 80 YO-20 9'0 glycerine-water 1.18 
SAE 30 0.85 

TABLE 1 .  Material parameters at 23 'C 

FIGURE 3. Stable perfect core-annular flow of SAE 30 oil and glycerine/water mixture. 
a = 1.86, m = 0.33, c2 = 1.4, J* = 2.26, F = 0, Iw, = 1.82. 

3.1. Free fall 

In  free fall there is no pressure gradient, F = 0, and the two fluids run down the pipe 
under the influence of gravity alone. As we shall see later in $8, the linear theory 
predicts that it is possible to choose parameters so as to achieve a perfect 
core-annular flow in free fall. It is very important to test this prediction because 
linearly stable pipe flows of a single fluid are known to be destabilized by finite- 
amplitude disturbances. The flows which the oil companies call lubricated are wavy 
core flows, not perfect core-annular flows. At one point we thought that it might be 
possible that wavy core flows can arise out of a subcritical bifurcation of perfect 
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core-annular flow. Until we carried out these experiments we had never seen a 
perfect core-annular flow, though the sketch of experiment 2 by Charles et al. (1961) 
called ‘oil in water concentric ’ is close to perfect and the data for this experiment are 
nearly in the region of stability (see figure 13 of PCJ). In  the experiment reported 
below, based on the predicted parameters for stable CAP, we built an apparatus and 
selected fluids to match the prediction and we were successful. Now it is established 
that it is possible to run a perfect core-annular flow, robustly stable to finite- 
amplitude disturbances if the operating conditions are stable according to linearized 
theory. 

PCJ have shown that the values of the viscosity ratio m for which stable CAF is 
possible lie on a bounded, actually not too large interval (see figure 11, PCJ, for 
example) and there is a certain m, near 0.5, which maximizes the size of the interval 
of Reynolds numbers for which CAF is stable. From our calculations in $8, we learn 
that heavy lubricants are beneficial and we can minimize capillary instability by 
choosing two fluids with a small interfacial tension. We need small interfacial 
tension, relatively heavy lubricant, a viscosity ratio which is somewhat close to 0.5 
and Reynolds number large enough to avoid capillary instability but not too high. 
These problems were solved by choosing a pipe with inner radius 0.3175 cm, using an 
80 YO glycerine and 20 YO water (by weight) mixture as the lubricant for the transport 
of Tropic Artic (Phillip) SAE 30 core fluid (see table 1). With these design parameters 
we have 5, = 1.4, m = 0.33 and we were able to realize stable CAF for various values 
of a. The example in figure 3 corresponds to a = 1.86, R, = 1.82 and J* = 2.66. The 
neutral curves for these parameters are exhibited in $8  and it will be shown that the 
linear theory agrees with experiment. Another stable CAP is shown in figure 4, where 
the oil has been dyed to improve visual contrast. 

We think it is important to draw attention to the effects of the material of 
construction of the pipe on the problem of lubrication. In fact, it was necessary to 
thoroughly wash the pipe with glycerine-water mixture. If the pipes were not so 
prepared we might see flow with oil deposited on the Plexiglas wall. There is an 
instability which we call ‘chugging’ which is associated with this failure of 
lubrication. We really have nothing in our equations to tell us whether the oil or the 
glycerine-water mixture will be on the wall. This appears to be a problem of adhesion 
which goes beyond the usual discussions of contact lines. 

3.2. Forced flows 
As explained earlier, we shall only describe some of the qualitative behaviour of 
forced flow here. A photograph of the U loop we use to study forced flows is shown 
in figure 5. The working fluids are water and heavy Mobil oil with p = 0.881 gm/cc, 
,u = 13.32 P.  This gives c2 = 1.135, m = 0.00067. Water is introduced in an annulus 
by small nozzles evenly distributed on a circle on the outer wall of the annulus. The 
oil is introduced through a thin-walled pipe at  the centre of the annulus, and after 
a few centimetres the flow of the water in the annulus merges with the flow of oil in 
the pipe. The applied pressure gradient in the water and oil tanks, and the volume 
flow rates of both water and oil, are adjustable ; they are dials with which we control 
the experiment. We can measure pressure drops and hold-up ratios in the two test 
sections used to monitor up- and down-flow. The test sections are seen in figure 5 as 
the portions of the U loop surrounded by boxes filled with glycerine designed to 
remove the visual distortion which is created by the circular tube. A high-speed video 
system is used to detect different flow configurations in these boxes and to measure 
the size of bubbles and slugs and other interesting quantities. 
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FIGURE 4. Stable perfect core-annular flow of dyed SAE 30 oil and glycerine/water mixture. 
a = 1.67. Material properties of SAE 30 oil and interfacial tension are uncertain due to the addition 
of dye. The pipe walls are indicated by the arrows. 

A sequence of photographs of the flows which are realized as the superficial water 
velocity V, = &,/A and the superficial oil velocity V,  = &,/A are varied is shown in 
figure 6. Here Q,, Q, are the volume flow rates of water and oil respectively and 
A = nRi (R, = 0.48 em) is the area of the cross-section of the whole pipe. There are two 
panels in each photograph : up-flow with the pressure gradient pushing the fluid up 
against gravity is on the left, down-flow with the pressure gradient pushing the fluid 
down in the same direction as gravity is on the right. When the oil velocity V,  is 
small, as in figure 6 (a,  b ) ,  oil bubbles are formed both in the up and down flows. These 
bubbles are a consequence of capillary instability in the unstable left-hand side of the 
(F,a)-plane of neutral curves shown in $9;  for example, figure 21 (b ) .  As V, is 
increased, wavy core flow is first observed in up-flow on the left, while the down-flow 
takes the form of bubbles and slugs as in figure 6 ( c ,  d )  or of long slugs as in figure 6 ( e ) .  
This trend can be explained in terms of hold-up ratio, used by Charles et al. (1961) 
in a similar experiment. In  general, the input oil-water ratio, R,,, = Q,/Q,, and the 
in si tu ratio, which is the ratio of the volume of the pipe occupied by oil to the volume 
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FIQURE 5. Forced-flow apparatus. The sections indicated by arrows are test sections and they are 
surrounded by boxes filled with glycerine to eliminate visual distortion. The left test section is for 
up-flow and the right is for down-flow. The two extra sections on the far left are only used for 
demonstration purpose. The inner radius of the pipe is 0.48 cm. 

occupied by water, are different because one of the components will tend to 
accumulate in the pipe. The hold-up ratio, defined as the ratio of the input oil-water 
ratio to  the in situ oil-water ratio, is thus an important parameter for core-annular 
flow. For a given input ratio Rolw, if oil accumulates in the pipe the hold-up ratio will 
be less than unity, and greater than unity if water accumulates in the pipe. When the 
flow rates are moderate, the accumulation of water in up-flow is greater than in 
down-flow because the effective gravity accelerates oil (buoyancy) and decelerates 
water. For down-flow, the opposite is true: gravity decelerates oil and accelerates 
water. This leads to an accumulation of oil in the down-flow. We have examined the 
in situ ratio in both up and down flows simultaneously and the results confirm that 
if the flow rates are not too large the in situ ratio in the down-flow test section is 
larger than that in the up-flow test section. At higher speeds this difference is 
negligible. Mathematically the above statement is equivalent to  the statement that 
for a given input ratio R,,,, the parameter u in our analysis has different values for 
up- and down-flow : a is larger for up-flow than for down-flow. For water and heavy 
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(4 (4 

FIGUEE 6(u-d).  For caption see p. 262. 
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(g) (4 
FIGURE 6(e-h) .  For caption see p. 262. 
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(k )  
FIGURE 6. Coreannular flow of heavy Mobil oil and water. The left panel is up-flow, gravity 
opposes the applied pressure gradient. The right panel is down-flow, gravity aids the applied 
pressure gradient. V, and V,  are the superficial velocities of water and oil respectively. (a )  
(V,, V,) = (0.436,0.283) ft/s; (b) (1.56,0.256) ft/s; (c) (0,436,0342) ft/s; ( d )  (1.56,0.582) ft/s; (e) 
(1.56,0.906) ft/s; ( f )  (0.413,0.426) ft/s; (9 )  (0.413,0.426) ft/s; (h) (0.554,0.739) ft/s; (i) 
(0.330,0.909) f t js ;  ( j )  (0.436,1.766) ft/s; (k) (1.116,1.241) ft/s. 
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Mobil oil, the parameters are not in the window of stable CAF: m is too small, c2 is 
not large enough, etc. Our discussions in $9 will show that with other parameters 
fixed, the unstable region will expand as a is increased, typically the upper branch 
of neutral curves, which is associated with wavy core flows, will sink. The instability 
on the upper branch is responsible for the wavy flows observed in up-flow while stable 
slugs occur in down-flow. For faster flows the effects of gravity are small and there 
is less difference between the up- and down-flows. The differences, which can be 
observed in figure 6 (f-j), are again well correlated with the argument about the hold- 
up ratio which leads to a larger water fraction, less stability, in up-flow. 

Many different and interesting nonlinear waves of large amplitude develop in 
vertical core-annular flow. There is as yet no coherent theory for these waves. We 
shall make a few casual observations. First, wakes are important, we see the drafting 
of slugs and bubbles, in which the rear bubble accelerates in the wake of the bubble 
preceding it, eventually forming a bubble train held together by pressure deficits 
behind the blunt body. Such trains can be seen a t  the top of the up-flow panel in 
figure 6 (a )  and the down-flow panel in figure 6 ( d ) .  This type of wake effect is present 
also in the wavy core behind the large crests as in the draining of up-flow jets shown 
in figure 6(c), (d ) ,  ( e )  and ( f ) .  Large-amplitude axisymmetric waves in up-flow with 
peaked crests like those shown a t  the top and the bottom of the left panel of figure 
6 (f) more typically take a corkscrew form in down-flow as is evident in the right 
panels of figure S ( f )  and (9). It can be argued that all non-axisymmetric waves will 
be forced to rotate by hydrodynamic couples associated with shear between oil and 
water. 

4. Disturbance equations 
The linear stability of CAP can be analysed in the usual way. We introduce the 

normal modes 

where (u, v, w), p are the perturbed velocity and pressure, and 6 is the deviation of the 
interface from a perfect cylinder of radius one. The spatial mean $of 6 must vanish 
if the volume of each of the two fluids is conserved in the linear approximation. The 
equations governing disturbance amplitudes are the same as those of (5.3), (5.4), (5 .5 )  
in PCJ except that the basic flow is given by (2.3). 

The form of boundary conditions and centreline conditions are the same as (5.6), 
(5.15) in PCJ. The interfacial conditions, (5.7), (5.8), (5.10) and (5.11) in P C J  are 
unchanged, but (5.9) which arises from the balance of shear tractions has to be 
replaced by 

This change is solely due to the presence of the density difference because 
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The condition (4.1) is better understood when written in dimensional form. It arises 
originally from the statement that the shear stress T,, is continuous across the inter- 
face r = R,+S: 

(4.3) 

b~(R, ) I I  = 0 (4.4) 

( 1  - 8;) Up( W'(r) + w, + u,)] + 2S,b(u, - w,)] = 0. 

The continuity of the shear stress for the basic flow for S = 0 is in the form 

and 

To leading order (4.3) reduces to 

auW(4)il = - UP1 9.  (4.51 

~ W ( R , ) I I  a+ b ( w ,  + u,)] = 0. (4.6) 

This shows that the jump in the shear stress on r = R, is balanced by the effective 
gravity 

(4.7) 

The instability associated with (4.7) is induced by gravity. The only stable 
equilibrium of two fluids in gravitational field is vertically stratified. Hence, when 
the velocity is reduced to zero the heavy fluid will fall into a stratified configuration 
with heavy fluid below. Experiments (cf. $3) and analysis show that this fall-down 
instability can be stabilized by shear. The gravity tcrm in this system of equations 
is not conservative because curlpg = g A Vp =k 0 

a01 ga = b ( w r  + 

(4.8) 

where Vp is distributional across the interface. 
HJ showed that the linearized energy equation may be used to identify sources of 

instabilities. The new features of the energy equation are the extra terms arising from 
the interface. Each of these terms is proportional to one of the material jumps of the 
two fluids. The growth rate of the energy of small disturbances is given by 

where E = I -D+B, 

Cjr(u2+v2+w2)dr, 

Im (uw*) dr, 

4n 
r 

(u2+v2+w2)+-Re (u*v) 

B = B1 +B2 +B3, 

+- 

(4.9) 

(4.10) 
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and 

c,  = Re ( c ) ,  ci = Im ( c )  > 0 ,  for instability, 

where Re stands for real part, Im for imaginary part, 
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and an asterisk denotes the complex conjugate. 
Here, E is the rate of change of kinetic energy of the perturbed flow ; I is the rate 

a t  which energy is transferred from the basic flow to the perturbed flow through 
Reynolds stress; -D is the rate of viscous dissipation of the perturbed flow and B 
is the rate a t  which the energy is being supplied a t  the interface. E and D may be 
further decomposed into a part in the water and a part in the oil. It is clear that B1 
is the energy supplied a t  the interface due to interfacial tension. It originates from 
the normal stress balance a t  the interface and arises from a perturbation of the 
curvature of the interface. Interfacial tension stabilizes short waves and all 
asymmetric waves (n 2 l) ,  and destabilizes long axisymmetric waves. 

B2 is the energy supply due to the viscosity jump which HJ called ‘interfacial 
friction ’. It comes from perturbing the condition expressing the continuity of 
velocity. This leads to  a jump in the shear rate which can be reduced to a viscosity 
jump. Instability due to interfacial friction is a viscous generalization of the 
Kelvin-Helmholtz instability. It has been found that when the densities are matched 
B2 stabilizes the flow a t  low Reynolds numbers, destabilizes a t  high Reynolds 
numbers and causes wavy core flows. The term B3 in the energy supply is 
proportional to the jump of the density, with gravity as a constant of proportionality. 
We have used gR;J/v, as the velocity scale so that the gravity effect is implicit. The 
last term in B3 also contains a factor proportional to the viscosity difference, 
indicating the coupling of the effect of the viscosity jump and the effect of the density 
jump. We call B3 interfacial gravity. 

It is clear from the energy equation that even when viscosities are matched 
(m = 1) and J* = 0, there is still an interfacial energy supply B = B3 due to interfacial 
gravity which can induce instability. 

5. Numerical method 
Following PCJ we applied a Chebyshev pseudo-spectral method to our eigenvalue 

problem. After introducing domain mappings and interpolation functions, as in PCJ, 
we obtain a discrete system of equations expressed in terms of nodal values in the 
following form 

( A + c B ) x  = 0 .  

This algebraic eigenvalue problem is then solved by the IMSL routine EIGZC on 
Cyber205. 

Convergence tests performed by increasing the truncation number N of the 
interpolation functions are shown in table 2. These tests confirm the property of 
exponential convergence of the pseudo-spectral Chebyshev method and demonstrate 
high accuracy with N = 20, which was used in our code. Our code is a modification 
of the one used by PCJ which was checked against J R R  and double checked by HJ. 
If we take c2 = 1 and 

4m 
F =  - 1 ,  m+a2--1 
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N a = 0.2 a = 0.4 

(3.737 404 9649334, - 0.205 81 1 112 8842) (7.319648 018 537 6, -0.523 218 316 177 5) 
(12.323064298926, - 2.71 1 6507867342) (25.706 130 236950, -3.946973 327401 9) 
(12,060966954248, -2.887 849569403 8) (25.759034 733466, -4.1 16637 279930 1) 

(3.739993735 155 1 ,  -0.204673988881 4) (7.320932 7653919, -0.522415504441 8) 
(12.323020570 444. - 2.71 1477 162 7236) (25.706 135783997, - 3.947 002 81 1 3862) 
(12.060966966 151, - 2.887 849567 5686) (25.759034733926, -4.116637 2724736) 

-0.522 407 029 306 9) 
( 1  2.323 023006 793, - 3.946 996576 231 2) 
(12.060965379790, - 2.887 847 701 230) (25.759040274883, -4.116645913823 1 )  

l4 

(3.739 982 183448 2, -0.204672 981 904 1 )  
- 2.7 1 1  482 453 633 7) 

(7.320923 830 298 8, 
(25.706 136 187 752, 

2o 

TABLE 2. Convergence tests for the three least stable modes. a = 1 . 1 ,  m = 0.5,  5, = 2.0, 
J* = 2000, R, = 10, F = 20 

25 { 

then our problem is identical with that of PCJ. Using this relation, we have again 
checked the consistency of our code with the one used by PCJ. 

PCJ showed that the axisymmetric modes are thc most dangerous when gravity 
is neglected. This result appears to carry over to all the different cases studied in the 
present problem. We have computed the growth rates for both axisymmetric and 
asymmetric modes n = 1 and 5 for a = 1.1, m = 0.95, 5, = 0.2, J* = F = 0, R, = 10, 
which is a free flow under gravity. The axisymmetric mode n = 0 has the largest 
growth rate. Similar mode comparisons have been carried out for other ranges of 
parameters and we found that the axisymmetric mode was always most unstable. 
The axisymmetric and n = 1 mode were compared for the upward flow against 
gravity. The axisymmetric mode was again the most dangerous. In  the rest of this 
paper, we restrict our attention to axisymmetric disturbances. 

6. Density stratification and interfacial gravity 
Interfacial gravity plays an important role in the disturbance energy budget. 

Density stratification could either stabilize or destabilize the basic flow, depending 
on the parameters. To illustrate the effect of density stratification, we consider the 
following two examples. 

In  the first example, we have calculated the growth rates for a = 1.1 ,  m = 1 ,  
J* = F = 0, R, = 10, corresponding to free fall with matched viscosities and zero 
interfacial tension. Figure 7 shows that the flow is stable when the lubricant is 
heavier than the core fluid and unstable when lighter. The interfacial mode 
degenerates to the neutral mode c = W( 1 )  when the densities are also matched. This 
example indicates that density stratification could cause instability even in the 
absence of interfacial tension and interfacial friction. 

We next consider the lubricated case, m = 0.5. JRR showed that for a horizontal 
pipe with matched density, in the absence of interfacial tension, CAF is stable to long 
waves if the lubricating layer is very thin. But if the lubricating layer is thick, CAF 
is unstable to long waves, even in the limit R + 0. This long-wave instability is due 
to interfacial friction. Interfacial tension can also induce a long-wave instability. For 
the vertical pipe flow studied here, say free fall, the same type of long-wave 
instability due to interfacial friction will be present if the radius ratio a is large, the 
densities are matched and interfacial tension is neglected. We want to determine if 
this long-wave instability can be stabilized by density stratification. We have 
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FIGURE 8. Growth rates for a = 1.86, m = 0.5, J* = F = 0, R = 1, and various values of 5, indicated 
above each curve. The JRR long-wave instability (g, = 1 )  is reinforced when 5, < 1, suppressed 
when 5, > 1 and stabilized when C2 3 1.15. 

computed the case a = 1.86, m = 0.5, J* = F = 0, R, = 1, and various values of 
density ratio Q, for the long waves a 4 1. The results are shown as plots of growth 
rates aci us. c2 in figure 8. From these plots i t  is clear that the JRR long-wave 
instability (5, = 1) is reinforced when Q < 1, suppressed when c2 > 1 and completely 
stabilized when g2 > CJ( > 1) .  In  our case, 

The stabilizing effect of using heavy lubricant seems to work generally. When 
interfacial tension is included, short waves (a  > 1) are stabilized and there is a battle 
in the long-wave range 0 < a < 1 between the destabilizing effect of surface tension 
and stabilizing effect of density stratification. In  the rest of this section, we shall 
include interfacial tension and monitor the terms in the energy budget corresponding 

is about 1.15. 

FIGURE 7 .  Growth rates for a = 1.1, m = 1 ,  J* = F = 0, R, = 10, and various values of 
indicated above each curve. The flow is stable when 5, > 1 and unstable when 5, < 1 .  
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FIGURE 9. The rate of change of disturbance energy E ws. Reynolds number R for a = 1.1, n~ = 1, 
F = 0, J* = 2000, 5, = 2.0, 1.5, 1.25. The flow is stable when R > Rc(cz): R,(2.0) = 190, 
Rc(1.5) = 330, R,.(1.25) = 550. 
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FIGURE 10. Energy supply B1, B3 for a = 1.1, m = 1,  F = 0, J* = 2000, cz = 2.0, 1.5, 1.25. 
Interfacial gravity B3 is always positive, destabilizing the flow. 

to the most unstable mode as the Reynolds number is varied. In  performing such 
calculations, we shall normalize our eigenfunction with U = 1. We choose the 
following parameters: a = 1.1, J* = 2000, F = 0, m = 1 and various values of c2, as 
one example of free flow under gravity. By matching the viscosities we make the B2 
term in the energy budget vanish so that we can isolate and study the interfacial 
gravity B3. 

We start with c2 > 1,  the heavy fluid is outside. In  figure 9, the rate of change of 
the disturbance energy E is plotted against Reynolds number R for three different 
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FIGURE 11. I-D for a = 1 . 1 ,  m = 1 ,  F = 0, J* = 2000, 6, = 2.0, 1.5, 1.25. 
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FIGURE 12. Rate of change of disturbance energy E for a = 1 . 1 ,  rn = 1 ,  F = 0, J* = 2000 
and C2 = 0.8, 0.5, 0.3. The flow is always unstable. 

values of c2. As R is increased to Rc(c2), k monotonically decays to zero. The flow is 
stable when R > Rc(c2). The fact that RJ2.0) < Rc(1.5) < R,(1.25) indicates that 
increasing the density of the lubricating fluid can stabilize the flow. Water is a good 
lubricant for oil. Glycerine may be even better. This point can be more clearly seen 
from figure 10, where we compare the interfacial energy supply Bl. Capillary 
instability is rapidly stabilized by using heavy lubricant. This result could be used 
for preventing the formation of slugs and bubbles in slow flows. 

Figure 10 also shows that interfacial gravity B3 is always positive and destabilizes 
the flow. In fact B3 is a monotonically increasing function of R and levels off at large 
R. Although the interfacial gravity is always destabilizing, the flow is stable when 
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At large Reynolds numbers, interfacial gravity B3 is the main source of instability. 
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FIGVRE 11. Z-D for a = 1.1, W L  = 1, F = 0 ,  J* = 2000 and c2 = 0.8, 0.5, 0.3. 

R > RC(c2). The larger c2, the faster B1 decays and the faster B3 increases. The 
Reynolds stress I - D  in the bulk fluids is plotted in figure 1 1 .  It is always stabilizing. 
This result, indicates that the stabilizing effect of using heavy lubricant is achieved 
through increasing viscous dissipation, not through interfacial gravity 8 3 .  

When t;, < 1 ,  the heavy fluid is in the core and the results are very different. The 
density stratification helps instability and the flow is always unstable for all the 
Reynolds numbers we have computed. Figure 12 shows that the rate of change of the 
disturbance energies E for 6, = 0.8, 0.5, 0.3 are positive and monotonic decreasing 
functions of Reynolds number. In figure 13, we have plotted the energy supply B1 
and interfacial gravity B3 against Reynolds number. At low Reynolds numbers, 
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interfacial tension is the main source of instability and a t  large Reynolds numbers 
the interfacial gravity is the main source of instability. The smaller the value of c2, 
the faster this transition of type of instability occurs, 

Figure 14 shows that I -D is stabilizing for all Reynolds numbers. The following 
conclusions can be drawn for flows falling freely under gravity, F = 0: 

(1)  Heavy lubricant suppresses the long-wave instability caused by interfacial 
tension and prevents the formation of slugs and bubbles. 

(2) Heavy lubricants can also stabilize the J R R  long-wave instability due to 
interfacial friction which occurs when a is large. 

(3) Capillary instability is dominant a t  low Reynolds numbers and is stabilized by 
shear a t  large Reynolds numbers. 

(4) Interfacial gravity is always destabilizing and increasingly so at higher 
Reynolds numbers. When the viscosities are matched and the lubricant is lighter, 
interfacial gravity is responsible for instability a t  large Reynolds numbers. 

7. Long waves 
In the long-wave limit a --f 0, the eigenvalue problem can be solved explicitly with 

a series of powers of a using the method of Yih (1967). The solution was first given 
by Hickox (1971), in terms of a different set of parameters than ours. The surface 
tension parameter used by Hickox is 

rn 

where W,(O) is the centreline velocity. As pointed out by PCJ, S is not a good surface 
tension parameter for the study of core-annular flow, since it depends strongly on the 
velocity. We prefer surface tension parameter J*, defined in $2, which was first 
introduced by Chandrasekhar (1961) in his study of capillary instability of jets of 
viscous liquid in air. 

The formula thus obtained for the eigenvalue c can be written as 

(7.1) 

where do) is a real constant and thus does not affect stability and c( l )  is purely 
imaginary and therefore determines the stability a t  the lowest order. In  fact c(l) can 
be written as 

c = c(o) +a c (1) +O(a2),  

J* 
c(’) = i { ,fAU? m) + V 2 ( U ,  m, 5 2 ,  F ) }  > (7.2) 

where f l ( a ,  m) is definite positive, measuring the capillary instability modified by 
shearing. The function f2(a,  m, c2, F )  indicates the effects of interfacial shearing and 
interfacial gravity on the long-wave stability, since f2(a, m, c2, F )  can be e.xpressed as 

(7.3) f,(a, m, 5DF) = ( 1  -m)  a,@, m, 52,F) + (1 - 52)q2(a, m, c 2 ,  F ) .  

We also noted that f2(u, m, c2, F )  is a quadratic polynomial in 5,. The details of these 
functions are given in the Appendix. 

Consider free flow under gravity (F = 0). If f 2 ( a ,  m, c2, 0) is negative, then there 
exists a critical Reynolds number R,, defined in the same way as Iw, in $2,  determined 
bv 
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FIGURE 15. Critical R,/J*f us. 5, for a = 0, m = 0.5, F = 0, and a as a parameter with value 
given above each curve. 

such that we have stability to long waves when R, > R, and instability when 
R, < 58,. Shear stabilizes capillary instability when R, > R, (PCJ; HJ) .  

In figure 15, we have plotted R,/J*f 0s. <, for m = 0.5 and different values of a. As 
we mentioned earlier, the functionf,(a, m, <,,F) is a parabola on the ( f,, <,)-plane for 
any given value of a, m and F and fl(a,m) is a constant for given a, m. For the 
parameters we choose, f, is a concave-up parabola. For the 5, range of interest, say 
0 < c, < 5.5,  there are three distinct cases, depending on the values of a :  

( 1 )  For small a (say a = 1.1) there is a region of stability R, > Ro(c,), for all 

(2) R,(<,) + co as 6, + c,. There is one and only one co in this range. This <, is one 
of the two zeros of the parabola f,(a, m, Q, 0), falling in the <, range considered. An 
example of this is the curve for a = 1.2. When <, < <,, the flow is unstable to long 
waves at every R, > R, = 0; when c2 > <, and R, > R, the flow is stable to long 
waves, when 5, > <, and R, < R, the flow is unstable to long waves. 

or C0,. 
The ratios Q1 and <,, are the two zeros of f ,(a, m, c,, 0) and they are both in the range 
0 < 6, < 5.5. The flow is unstable to long waves when < <, < <,, a t  all R, < R0(<J 
and is stable when R, > R,. When c, < <,, or 5, > lo, the flow is unstable a t  all values 
of R,. The curves for a = 1.4 and 1.6 are of this type. 

The above classifications only make sense in the range of 5, considered, i.e. 0 < c, 
< 5.5 In fact type (3) is the generic case. But for smaller values of a ,  one or both of 
the zeros and Q, of fi(a, m, <,, 0) may be either negative or too large out of the 
range of interest. 

For forced flow F =+ 0, we can determine Pu and 8 for given values of R, and the 
other parameters such that when Pl < F < PU, long waves are unstable. This 
corresponds to  capillary instability. Some examples are given in $9. 

It was shown by PCJ and Renardy (1987) that  maximum growth rates occur when 
the wave numbers are of order 1 rather than for long waves (a: + 0). It is therefore 
never sufficient to discuss the stability of CAF to long waves alone, 

0 < <, < 5.5.  

(3) There are two critical density ratios Co1 and co2, Ro(c2) + co as c2 + 
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FIGURE 16. Lower and upper branches of the neutral curves for a = 1.1, m = 0.5, F = 0, J* = 2000, 
5, = 2.0, 1.6, 1.4, 1.2, 1.0,0.5. Stable and unstable regions are marked by S and U respectively. The 
plotting symbols for C2 are: m, 2.0; 4, 1.6; A, 1.4; +, 1.2; X ,  1.0; 0, 0.5. 

8. Neutral curves: free-fall flow under gravity 
The simplest vertical CAF is free fall under gravity, F = 0. This flow can be 

realized physically by slowly pouring fluids into a vertical pipe (cf. 93.1). The effects 
of density stratification in free fall can be determined by comparing neutral curves 
in the (R,, a)-plane. 

I n  figures 16-19, we have generated neutral curves for a = 1.1, 1.2, 1.3, m = 0.5, 
J*  = 2000, and c2 = 0.5, 1.0, 1.2, 1.4, 1.6, 2.0. 

The following observations can be obtained from inspecting the neutral curves for 
a = 1.1: 

(1) There is an interval 
(8.1) R, < R, < R, 

in which CAF is stable for all the six values of 5,. Here R,, R, are the maximum and 
minimum Reynolds numbers on the lower and upper branch respectively. 
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FIGURE 17. Neutral curves for a = 1.2, m = 0.5, F = 0, J* = 2000, c2 = 2.0, 1.6, 1.4, 1.2, 1.0, 
0.5. Symbols as for figure 16. 

U 

( 2 )  & ( ( I z )  is a monotonically decreasing function of (I, in the range of c2 considered. 
The heavier the lubricant, the smaller is the maximum Reynolds number below 
which CAF is unstable to capillary instability induced by interfacial tension. 

(3) Ru(C2) is not monotonic in 5,: 
R,(1.2) > RJ1.4) > R,(l.O) > Ru(1.6) > RJ2.0) > R,(0.5). 

There is an optimal value of (I2, around 1.2, that maximizes Ru((12). 

compared to that of RU(C2). 

the lighter fluid is outside, c2 < 1, and reaches a maximum when (Iz = 1.2. 

shorter waves. 

there are some new features : 

(4) The change of RL((12) with respect to the density ratio (I2 is relatively small 

( 5 )  The stable interval (8.1) is larger when heavy fluid is outside, (Iz > 1, than when 

(6) Increasing the density of the lubricating fluid moves the upper branch towards 

Similar conclusions can be drawn from figures 17, 18, 19 for a = 1.2 and 1.3, but 

( 7 )  When a = 1.2, linearly stable CAF is no longer possible for I& = 0.5, while there 
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FIGURE 18. Pu’eutral curves for a = 1.3, m = 0.5, F = 0, J* = 2000, Q = 2.0, 1.6, 1.4, 1.2. 
Symbols as for figure 16. 

still exists a stable window of R, in which CAP is stable for other density ratios 
5, = 1.0, 1.2, 1.4, 1.6 and 2.0. When u = 1.3, not only 5, = 0.5 but also c2 = 1.0 
become unstable, while others are still stable. 

(8) The optimal value of Q which maximizes RU(c2) is still about 5, = 1.2 for both 
a = 1.2 and 1.3. 

(9) Comparing figures 16, 17 and 18, we found that, for those 5, values with which 
there is a stable R, window, and therefore R L ( Q  and Ru(c2) could be defined, the 
following relations hold : 

R ~ ( c 2 ) 1 a = 1 . 1  < R ~ ( c 2 ) 1 a - 1 . 2  < R ~ ( c 2 ) l a = i . 3 ,  

& ~ ( c 2 ) 1 a - i . i  > R u ( c 2 ) 1 a - 1 . 2  > R ~ ( ~ 2 ) l a = i . 3 ~  

(8.2) 

(8.3) 

In other words, for a fixed value of C2, the size of the R, window, in which CAF is 
stable, is a decreasing function of a.  
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F I a u R E  19. Left and right branches of neutral curves for a = 1.3, m = 0.5, F = 0, J* = 2000, 
5, = 1.0, 0.5. CAF is always unstable for these density ratios. Symbols as for figure 16. 

The main results obtained in the study of the neutral curves for m = 0.5, 
J*  = 2000 can be summarized as (a )  for a fixed value of a ,  there exists an optimal 
value of density ratio C,,, which maximizes the size of stability window of R,. For the 
cases we computed, 5, is about 1.2 for a = 1 . 1 ,  1.2 and 1.3; (6) for a fixed value 
of I&, increasing a (increasing the volume of lubricant) will decrease the size of 
stable window of R,, or even destroy the stability of the flow, like the cases a = 1.2, 
5, = 0.5 and a = 1.3, 5, = 0.5, 1.0. 

PCJ have shown that, other parameters fixed, there is an optimal value of 
viscosity ratio m which maximizes the size of the interval of Reynolds number for 
which CAF is stable. Using this result and those obtained above as a guideline, we 
designed and successfully realized perfect and stable coreannular flows in the free- 
fall experiment described in $3.1. The neutral curves corresponding t.0 the example 
of figure 3 is given in figure 20, where the parameters m = 0.33, 5, = 1.4, a = 1.86, 
J* = 2.66, and the Reynolds number for the experiment [w, = 1.82 is shown as a 
dashed line. Clearly the Reynolds number for the experiment falls in the stability 
window of R, and the experiment agrees with the linear theory. 

9. Neutral curves: forced flows 
In this section we shall calculate neutral curves for forced flows. We are going to 

explore the effects of varying the density ratio on lubricating layers a = 1 . 1 ,  1.2, 1.3 
and 1.4 for a sample set of parameters m = 0.5, J* = 2000, R, = 10. 

Neutral curves for a = 1 .1  are shown in figure 21. For each value of c2, there are 
three branches of neutral curves. A region of capillary instability to long waves is 
formed for slow motions around F = - 1 .  This region is shown in ( 6 ) .  When C2 = 1 ,  
all the neutral curves are symmetric about the axis F = - 1.  Since the basic flow is 
symmetric about F = - 1 ,  changing the value of F from Fl to -Fl -2  will only 
reverse the flow without changing the dynamics. Figure 21 (6)  shows that heavier 
lubricants will shift the region of capillary instability downward without changing its 
shape. Therefore, for a given pressure gradient, one way to overcome the capillary 
instability is to use heavy lubricant for down-flows (say F > 0) or light lubricant for 
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FIGURE 20. Keutral curves for free fall, a = 1.86, m = 0.33, c2 = 1.4, J* = 2.26, F = 0. Stable and 
unstable regions are marked by S and U respectively. The dashed straight line corresponds to the 
experiment R, = 1.82, which is shown in figure 3. Stable perfect coreannular flow is observed. 

up-flows (say F < - I). This result counters the heuristic idea that the heavier fluid 
should tend to stay a t  the centre of the pipe for down-flows and with light fluid a t  
the centre for up-flows. Renardy (1987) has already demonstrated for some cases 
that this common intuition is wrong for plane vertical Poiseuille flow of two fluids. 

The upper branches (a)  of the neutral curves correspond to fast flow. The effect of 
increasing 5, on the top curve of figure 2 l ( a )  is interesting. We may confine our 
remarks to  the positive upper branch (F being positive) since the negative upper 
branch (F being negative) is dynamically similar to the positive one with the sign of 
F reversed. Similar to the case of free fall under gravity, for a given value of a ,  there 
is an optimizing value cm of the density ratio c2, for with Fu(cm) is a maximum, where 
Fu(c,) is the minimum value of F ( a )  on the upper neutral curve over CL for each fixed 
value c2. For a = 1.1 ,  cm is about 1.5. The upper branch (a) is more sensitive than the 
capillary branch (b)  to changes of 5,. When c2 is increased the unstable wavenumbers 
on the upper branches (a )  are shifted to shorter waves, larger a. 
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FIGURE 21. Keutral curves for n = 1.1, ni = 0.5, J* = 2000, R, = 10, and different values of 5, given 
by the numbers above each curve. (a )  Upper positive and negative F branches. The negative 
branches are similar to  the positive ones. The band of stable region is maximized for a certain value 
[, of C2, and Crn is close to 1.5. ( b )  Regions of capillary instability. 

Figure 22 gives the neutral curves for u = 1.2. For each given value of c2, the size 
of stable regions for CAF are rapidly reduced as the water fraction is increased. For 
c2 = 0.5, stable CAF is impossible for a = 1.2, while for a = 1.1 there is still a region 
of stability. The main effect of incrcasing a is to move the upper branches downward, 
reducing the region of stability. The lower branch of the neutral curve is less sensitive 
to changing a. The upper branch sinks as a is increased until i t  connects with the 
lower branch at  a critical value of a.  Then stable CAF is not possible. The critical 
value of a depends strongly on all the other parameters. 

The neutral curves for negative values of F in figure 22(a)  are nearly mirror 
reflections of the upper branches of neutral curves for positive F across the line 
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FIGURE 22. Pjeutral curves for a = 1.2, m = 0.5, J* = 2000, R, = 10, and different values of 5,. (a) 
Positive and negative F upper branches. The stability regions are largest when the density ratio 
5, is close to 1.5. ( b )  Detailed view near the capillary instability region. The neutral curves for 

= 0.5 are also shown here. CAF is always unstable for 5% = 0.5. 

F = - 1 .  We call these 'negative-F upper branches'. The negative-F upper branches 
shift to short waves as &, is increased more strongly than the positive branches (see 
figure 22a) .  There is again a density ratio which maximizes stability. 

Figure 23 shows that when the density is matched stable CAF is possible when the 
radius ratio a < 1.2, but is not possible for a = 1.3. Stable CAP can be achieved when 
a is large by choosing a lubricant which brings the density ratio close to the optimal 
one, stability for a = 1.3 when c2 = 2 and instability when 6, = 0.5. 

Very similar to the free-fall situation discussed in $8, for a given a, the largest 
window of stable CAF can be achieved by choosing a favourable density ratio Q, and 
for a given density ratio Q, the size of the stable region can be reduced by increasing 
the radius ratio a .  For example, the stabilization of the flow for a = 1.3, achieved by 



280 K .  Chen, R. Bai and D. D .  Joseph 

4U t -  

U S 

-4.0[ I ' .  ' . " . . " ' '  ' 
0 0.2 0.4 0.6 0.8 1 .o 1.2 

a 

U 

I .  . I *  . I  . ' I  

0.02 0.04 0.06 0.08 
a 

FIGURE 23 (a-c). For caption see facing page. 
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FIGURE 23. X'eutral curves for a = 1.3, m = 0.5, J* = 2000, R, = 10, and different values of 5,. 
Stable CAF is hard to achieve. (a) A global view. (b) Region of capillary instability for t;, = 2.0. (c) 
Left branch for & = 0.5: it consists of two parts. ( d )  Right branch for c2 = 0.5. 

increasing the density ratio to 5, = 2 (figure 23a), is nearly lost when a is increased 
to  1.4 (figure 24d). The figures show that the destabilization with increasing lubricant 
fraction (or radius ratio a)  acts on the upper branch of the neutral curve and can be 
countered by a suitable choice of c2 = ern, where Crn is the most favourable density 
ratio. We may have stability, even with large a ,  by a strategic choice of &',. 

10. Conclusions 
We have analysed the effects of the density difference on the stability of vertical 

core-annular flow. The density difference changes the basic flow and introduces an 
effective gravity b ] g  in the balance equation for the shear stress a t  the interface. 

First we summarize the main results for free fall when the lubricating layer is thin 
and the viscosities are matched, (F ,a ,m)  = ( O , l . l ,  I) ,  emphasizing the effect of the 
density ratio. 

(1) Energy analysis shows that interfacial gravity is destabilizing, for heavy and 
light lubricants and a t  all Reynolds numbers. 

(2) The Reynolds stress minus the dissipation is stabilizing in all the cases we 
computed. 

(3) The stabilizing effects just mentioned are in opposition to capillary instability 
and to the destabilizing effects of gravity at the interface which drive the fluids to 
vertical stratification. The flow may be stabilized by dissipation for R > R,.(c2) if the 
lubricant is heavy, but not if it is light. 

Now we allow for different viscosities with the more viscous fluid inside, as usual, 
m = 0.5. 

(4) Heavy lubricants suppress capillary instability. Increasing the density of the 
lubricant shifts the upper branch of the neutral curves towards shorter waves. 

( 5 )  When the lubricating layer is thin and the density ratio is not too small, there 
is an interval of Reynolds numbers between the lower and upper branches in which 
CAF is stable. 
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FIGURE 24 (a-c). For caption see facing page. 
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FIQURE 24. Neutral curves for a = 1.4, m = 0.5, J* = 2000, R, = 10 and various c2. (a) Left branch 
for c2 = 0.5. (b )  Right branch for cz = 0.5. CAF is always unstable. (c) = 1. CAF is always 
unstable. (d )  Positive and negative upper branches for = 2. There is a narrow band of stability. 
( e )  Region of capillary instability for c2 = 2. 

(6) For a given value of a ,  we can maximize the interval of Reynolds numbers on 
which CAF is stable by choosing a best 5, = em, 0 < ern < CQ, the other parameters 
being fixed. The destabilization of the upper branch due to increasing a ,  thick 
lubricating layers, can be countered by using lubricants with c2 close to ern. 

In the case of forced flow, F =I= 0 and F can be positive or negative. When c2 = 1,  
F = - 1 implies that the gravity force and the pressure gradient are in balance and 
the neutrally buoyant core flow will break up by capillary instability. Large positive 
F means down-flow, negative F means up-flow. There are two branches of neutral 
curves for up-flow and two branches for down-flow, the capillary branch and the 
upper branch. 

(7) To achieve stable CAF for slow flow, use a heavy lubricant for down-flow and 
a light one for up-flow. 

(8) The difference between up-flow and down-flow decreases with IFI. 

FLII 214 1 0  
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(9) The upper branch for up-flow and down-flow is more sensitive to changes in the 
density of the lubricant than the capillary branch. Increasing the density of the 
lubricant will shift all the upper branches to shorter waves. 

(10) Other parameters being fixed, there is an optimizing density ratio c2 = &, 
which gives the largest interval of Reynolds numbers for stability. It follows, for 
example, that the thickest stable lubricating layer is the one for which 5, = cm. 

Our experiments on free fall have established that it is possible to run a perfect 
core-annular flow, robustly stable to finite-amplitude disturbances if the operating 
conditions are stable according to  linearized theory. There is a huge amount of 
information which can be obtained from experiments on forced flow. Some 
preliminary results given here are enough to  show range of flows which can be 
expected from a heavy motor oil and water. The hold-up ratio proves to be an 
important parameter in determining the operating water fraction. Water accumu- 
lates in up-flow because effective gravity accelerates oil and decelerates water. 
For down-flow, the opposite is true, gravity accelerates water and decelerates oil. We 
therefore get a greater accumulation of water in up-flow. This fact appears to explain 
the differences observed in up- and down-flow in figure 6. 

We intend to prepare flow charts for forced flow with superficial velocities, 
pressure gradients and hold-up ratios for different oils and to compare the 
observations with linear theory in a future publication. 
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Appendix 

power series of a. The eigenvalue 
In the long-wave limit a+O, the eigenvalue problem can be solved explicitly in 

e = c(0) +ad’) + O(a2). 

It is found that do) is real and thus does not affect the stability: 

2(a4 + m - 1) In a - (a2 - 1) (m + 2a2 - 2) 
4m(a4 + m - 1) urni w”(i)n, UW(1)I + (d-  1 ) 2  

2(a4+m-1) 
W(1) - d o )  = 

where m1 = 1 and m2 = m. At the next order, O(a), c(l) is found to be purely 
imaginary and can be expressed as 

The function fi(a, m) is definite positive and can be written as 

fib, m) = G d G ,  > 0, 
where 

GI = 8 1 9 2 ~ ~ m ~ ( ~ ~ + m - l ) ~  > 0, 

G, = 5 12am{m( u4 - 4a2 + 3 + 4 In a )  + 4( a2 - 1)  [ (a2 + 1) In a + 1 - a2]}  > 0. 
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To define the function f,(a,m,c,,F), we have to  first define the following 
parameters : 

A, = 64am2[W'( l)] + 32am(a2 - 1) [m, W"( l)], 

A, = 64am{ ( a' - 1 ), - m} I[ W (  1 )] - 64a{ (a' - 1 ) (a2 + m - 1) 

- (a4 + m= 1) In a} [m, W"(l)], 

B, = 64am[W'(1)]+32a(a2-l)[[ml W"(l)j, B, = -64a(a4+m-l)[m, W"(l)], 

B, = -128a3m[W'(1)]-32a{(a2-l)2-m-2(a4+m-1)lna}~m, W(l)], 

B, = 64a5m[W'(1)j -32a3(a2 +m- 1) [m, W(l)Jj, 

El, = 4aMa'- I)', El, = -8a{(a2- 1) [(a2-2) m-2(a2- l)] + 2(a4+m- 1) h a } ,  

E,, = -4a[m+2(a2-l)], E,, = 16a(a4+m-l), 

E23 = - 8a{2(a4 + m- 1) In a- (a2 - 1) (a' + m- l)), 

Then we define: 

E,, = - 4a3{a2m- 2(a2 + m- 1)). 

G3 = (Ell {( w( l) - c(o)) [4A1 + 2A3 - 6 2 ( a ,  +B, + 2B3)] - "1 W (  I)] (A1 +A,)} ,  

11, = ~ , ~ ~ , 1 ~ - P 1 , + ~ P P , z - ~ ~ 0 ~ ~ + ~ l z ( - ~ ~ 1 1 + 2 ~ , , - 2 c ~ 0 ~ ) } ,  

1 1 2  = 2 X Bj EZt hji, 
4 4  

where hji are given by j=1 i-1 

h,, = 4(4P,, - 4d0' - Pzz)  (as - 1) - P,,(a8 - 1) - $3,,(6a6 In a - a6 + l),  

h,, = 9(4/323-4~(0)-/3zz)(4a41na-a4+ 1)-~~, , (6a61na-a6+ 1) 

- 2p,,{a4( In a)' - 9(4a4 In a - a4 + I)), 

hi3 = +(4PZ3 - 4d0) -P2') (a4 - 1) - &(a6 - 1) - +P2,(4a4 In a-a4 + 1 ), 

h 14 = (4P2, - 4 ~ ' ~ ' - ~ , ~ )  (az- 1) - 2PZ1(a4 - 1) - 2/3,,(2a2 In a--a2 + l),  

h,, = &PZ3 - do))  (a4 - 1) - $,, (as - 1 ) - $,,(4a4 In a - a4 + 1 ), 

h,, = t(P,, -do))  (2a2 In a-a2 + 1) -$,,(4a4 In a--a4 + 1) 

-Pz2[2a2(ln a)'- 2a2 In a + a2 - I)], 

h23 = ~ P ; , - c ~ o ~ ~ ~ ( a ' - ~ ~ - ~ ~ z 1 ~ a ~ - ~ ~ - ~ 2 2 ~ ~ a ~ ~ n a - u ~ + i ~ ,  

h24 = ~ ( ~ , , - ~ ( ~ ) ) 1 n u - 2 ~ , , ( u ~ -  1) -2P, , ( ln~)~ ,  

h31 = -&(a4-l), h,, = -~~,,(2a'1na-u2+1), h3, = -Pzz(a2- l ) ,  

h,, = - 2P,, In a, h,, = - 2P,, In a, 
a'- 1 

h42 = -/322(lna)2, h,, = -2P,,lna, h,, = -P 2 2 7 .  

10-2 
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Now the function f ,(a, m, c,, F )  is given by 

And it is easy to see that other parameters fixed, f , (a,m,[, ,F) is quadratic 
polynomial of 6,. 
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